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Several studies [1-3] have been devoted to the solution of coupled heat-transfer prob- 
lems. Here we examine nonsteady heat transfer in the supersonic flow of an ideal gas about 
axisymmetric solids of revolution with values of the determining parameters of the problem 
corresponding to different flow regimes in the boundary layer. Numerical and analytical 
solutions for heat flux with a nonisothermal surface are compared in the case of laminar flow 
in the boundary layer. It is shown that in this case heat flux to the body has a structure 
which is related to the history of development of the thermal and dynamic boundary layers 
and to the value of the local surface-temperature derivative. Here, substantial errors may 
result from the use of standard formulas for the heat-transfer coefficient without allowance 
for dTw/ds when the values of dTw/ds are large and the determination of the temperature field 
in the body is posed as a separate problem. It should be noted that the effect of a noniso- 
thermal surface temperature on heat flux to a wall in flow about plane bodies was examined 
in [4, 5]. 

i. In accordance with [2, 3], characteristics of coupled heat transfer will be sought 
from the solution of a system of equations describing the change in mean values in the bound- 
ary layer [3] and the nonsteady equation of heat conduction in the shell of a body with the 
corresponding initial and boundary conditions. 

With allowance for the Dorodnitsyn-Lees variables for the equations of the gas phase 
in a natural coordinate system connected with the outside surface of the shell, the system 
of equations appears as follows in dimensionless variables: 
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The boundary and initial conditions are written in the form 
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Here, s is the dimensionless length of an arc reckoned from the critical point on the external 
contour of the shell; q and Yz are directed normal to the external contour on different sides; 
H l and r are the Lame constants; y = Ue2/cpTe0, 
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are dimensionless parameters; Re = vmPe0RN/De0; Vm = 2~e0; x = t/t "2, 0 = T/Te0 are the dimen- 
sionless time and temperature; t* = RNpz,cI*/Xz,; RN, L is the characteristic dimension and 
thickness of the shell. The subscripts e, e0, and w pertain to parameters on the external 
boundary of the boundary layer, on the external boundary at the stagnation point, and on the 
outside surface of the shell, respectively. The subscript i denotes characteristics of the 
solid phase, while the subscripts m and t denote characteristics of molecular and turbulent 

transfer. 

A two-layer model of a turbulent boundary layer was used to describe turbulent flow. 
The eddy viscosity coefficient in the internal region was found from the Prandtl formula with 
the Van-Drist-Cebeci damping factor [6]: 

�9 , A , ,  2 au t = O , t 6 p y  ~ { l - e x p t - y /  B -~-y, (1.8) 
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In the external region we used the Clauser formula with a correction factor which con- 
sidered alternation: 

~t t = 0.0168p [t + 5,5 (y/6)~] -~ ; (u~ -- u) dy. 
0 

( l .9)  

The boundary between the regions was found from the condition of equality of the coefficients 
(1.8) and (1.9). 

The coefficient of longitudinal alternation F for the case of flow about blunt bodies 
was taken from [7] in the transitional region from the laminar to the turbulent regime. The 
origin was determined by the point of loss of stability. The coordinate of this point was 
determined from the condition for the critical value of the Reynolds number: 

Re** u,p,6** = 2 0 0 , 6 * *  i pu (t-- U ) dY �9 
0 

In the laminar flow regime, F = 0. In the turbulent regime, F = i. 

The completed calculations and comparison with experimental data [8] showed that the 
given model of turbulent flow can be used. 

We examined flow about spherical bodies and bodies with generatrix equations Yc = Xc ~, 
= 0.5, 0.215, and 0.125 (here, the dimensionless quantities Xc and Yc correspond to a 

Cartesian coordinate system with its origin at the critical point. The Xc axis is directed 
along the ss~nmetry axis of solids of revolution.) The data in [9], approximated by means of 
splines, was used for the pressure distribution on the external boundary of the boundary layer. 

In the numerical integration, Prm = 0.72 and Prt = i. The molecular viscosity coeffi- 
cient was determined either from the Sutherland law or from the power dependence on temperature. 
The system of boundary-layer equations was integrated numerically by a difference scheme ob- 
tained by means of an iterative-interpolational method [i0]. The two-dimensional heat-con- 
duction equation in the body was calculated by the decomposition method [ii] in combination 
with the method in [i0]. The computational procedure was examined in detail in [3]. 

In the numerical calculations, the thermophysical characteristics of the material were 
assumed to be constant, and we varied the following determining parameters of the problem: 
the Mach number in the incoming flow, Re = VmPe0RN/De0, the initial temperature Ozi, and the 
coupling parameter K =4~Prm~e0/Xl,. 

2. We will examine the results of the solution of boundary-value problem (1.1)-(1.7). 
First, let us examine the case of laminar flow in the boundary layer. Figure i shows distribu- 
tions of dimensionless heat flux qw = XwST/~ylw~/pe0vmhe0 and surface temperature @w = Tw/ 
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Te0 at different moments of time. The calculations were performed for the contour Yc = 
Xc~ lines) and a sphere (dashed lines). Curves i correspond to �9 = 0, while 
curves 2 correspond to ~ = 0.08. Here, M~ = 4, P/Pe0 = VO-, T~ = 288~ Oii = 0.248, K = 
3.186, L/RN = 0.i, 80/~ylly1=L/R N = 0. The results were obtained from the solution of a one- 
dimensional heat-conduction equation because, as will be shown below, heat flow along the 
longitudinal coordinate s can be ignored for the given determining parameters of the problem. 
It follows from Fig. i that with the generatrix Yc = Xc ~ at the initial moment of time 

= 0 the heat-flux maxima is reached on the lateral surface in the region with the smallest 
radius of curvature of the contour and the greatest velocity gradient on the external bound- 
ary. Over time, this process leads to a maximum surface temperature in the given region and 
a subsequent decrease in heat flux (curves 2). Results of analysis of the solution in the 
form of the ratio St/St 0 = qw(l - Ow0)/[qw0(l - Ow)] for different moments of time (curves 
i and 3 - < ffi 0; 2 and r - �9 = 0.08) are shown in Fig. 2a (curves i and 2 are for the body 
with Xc ~ while 3 and 4 are for the sphere). The corresponding distribution Ow(S) at m = 
0.08 for Yc = Xc ~ is shown in Fig. 2b, c. The relative heat-flux distribution agrees 
well with the formulas in [12.] and St/St 0 = qw/qw0 for the isothermal surface of the body at 

= 0. The circles in Fig. 2a show data obtained from the formulas in [12] with Ow =Oli. 

In the general case of an isothermal surface Tw(s), the method of successive approxima- 
tions [13, 14] can be used to write a formula for the heat-flux ratio 

q~(~) ' ~ r ~  ~ (i -- (~) B~ (O) ~/~g(o~ 
- =  l /  d ~ ,  ( B~ (~) Y ~ + qwo ~ 2 ~ Is=OPeo~eo ~ ( 2 . 1  ) 
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while the expression for the control function 6g(s)has the form 

J ( ! , ) [  (; , )] 5~  ( s )  = ( t  - ~ )  r e x p  ~ ~ ds ds oap exp ~ ~ ds o Pr Boo (s) ~o ' 

'~ : Oe[..teUe ~ " 

Here, in accordance with [14], we write the integrals r and Boo as follows with the sought 
profiles given in the form of an error integral and the viscosity law P/De0 = ~-- 

(2.2) 

01 0.068+0,091t- Ow(s) t~/2 0057/0~(s) t~/~ = 2 , B ~ = 0 . 0 6 8 +  . ~ . 
l --e 

Expanding the functions in the neighborhood of the critical point, we obtain the fol- 

lowing, accurate to within the second order: 

5g(0) 2 prn~B (0), B~ (0) = 0.068 + 0.057052. (2.3) 
The results of numerical integration and analysis of Eq. (2.1) in the case 0w = const 

show that parametric sampling of the value of Ow has little effect on the heat-flux ratio 
[14]. At the same time, it follows from Eq. (2.1) that the second term, connected with the 
derivative 80w/Ss, may make a substantial contribution to the value of the heat-transfer co- 
efficient in the case of a nonisothermal surface. It was shown in [15] and confirmed by a 
comparison of theoretical and experimental data that a variable temperature Tw(s) has a sig- 
nificant effect on the Nusselt number in the flow of an incompressible gas about a flat plate. 

It follows from a comparison of the curves in Fig. 2a that the ratio St/St 0 obtained 
for constant; and variable surface temperatures may differ appreciably. Here, in accordance 
with (2.1), St/St 0 decreases on the lateral part of the surface in the region of positive 
values of 80w/Ss, while it increases for negative values. The use of the coefficient of heat 
transfer from the gas phase found for an isothermal surface may lead to serious understate- 
ment of surface temperature at 80w/3S < 0 in this case. 

The results of the solution in an exact formulation with allowance for coupled heat trans- 
fer (curve l) and the results obtained with the separate formulation are compared in Fig. 
2b, c. Here and in Fig. 3, curves 2 correspond to the solution of the heat-conduction equa- 
tion with a specified heat flux from the gas phase in the form qw = [qw(s)/qw0]qw0, where 
qw(s)/qw0 was taken from (2.1). The well-known formulas in [16] were used to calculate heat 
flux in the neighborhood of the critical point qw0. Here, curves 3 were obtained for the case 
when the second term was not considered in Eq. (2.1), i.e., with X = 0. The expression for 
the control function 6g(S) is also simplified in this case. 

It follows from comparison of curves @w(s) with the heat flux assigned with allowance for 
(2.1) that there is fairly good agreement between the results of the solutions in the exact 
and separate formulations. If we consider only the history of development of the thermal 
boundary layer and do not consider the value of the local derivative 80w/SS, then the surface 
temperatures are reduced at 8Gw/Ss < 0. This has a greater effect for the body with Yc = 
Xc ~ for which there is a significant change in conditions on the external boundary of 
the boundary layer and, thus, in the surface temperature at s > 0.6. The error of Ow for the 
sphere is no greater than 5-6% at s 5 1 and 10% at s > i. 
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If we use the expression qw = (qw(s)/qw0)~ as the heat flux from the gas phase in the 
separate formulation of the problem - with the relative heat flux (qw/qw0) ~ being chosen with 
an initially isothermal surface temperature - then the error of Ow(s) in such an approach in- 
creases significantly (curves 4 in Fig. 3 and Fig. 2b, c). Curves 5 were obtained with the 
use of the flux qw = St(s)(l - @w)qw0/[St(0)(l - Ow0)], where the ratio St(s)/St(0) was taken 
with Owi. These approaches correspond to specification of the coefficient of heat transfer 
from the gas phase for an isothermal surface. 

The effect of nonisothermal temperature @w(S) on the coefficient of heat transfer from 
the gas phase can be analyzed by means of the analytical solution (2.1). We will construct 
the nonisothermality coefficient in the form of the ratio St/St 0 for variable and constant 
surface temperatures, other conditions being equal: 

X - - ( S t / S t o ) i s  ~ V ~  i +  ~ = ~  i 2B=(~) [ ( I -w) B-L-~V~-TNFJi (2.4) 

(the index is corresponds to the characteristics of the isothermal surface). If p - T, then 
r = const = 0.159; B~(s) = const = 0.125, and Eqs. (2.4) and (2.2) can be simplified. 
Using the assumption Prm = i, we obtain 

( ~ • 1 6 2  z l - - ~  , ( 2 . 5 )  
V ~g (~) L 

aP I 

1 - -  0 w ~ s u ~v 

S 

i 0 

Let us examine the case of flow about a sphere when rw/RN = sin s. The velocity on the exter- 

nal boundaryue will be given as ue = due/dsls=0S, while we will use Newton's formula pe/Pe0 = 
cos2s for the distribution of Pc. Considering the character of the distribution qw(s) about 
the circumference of the sphere, we specify @w(S) in the form (i - @w)/(l - @w0) = (i + 
As2) B=/r where A is a positive constant coefficient. At A = 0, we have @w(S) = @w0 = const. 

Then from (2.5), 
6g (~ iS i + As 2 

t + A ~ s 3 cos 2 s s in  2 s ds s cos ~ s sin 2 sds 

o / 

i 
s a ~os~s s in 2 s ds ( 2 . 7  ) 

s 4 - -  s a sin 4s - - 0 , 7 5  s 2 cos 4s + (3/8) s s in  43 + (3/32) cos 43 3/32 0 

f scos2ssin 2 s ds 
o 

Considering that 28g(s)B= = 6g(S)/6g(S)is, % = 

25 ~ -- s s in 45 -- 0,25 cos 45 + 0,25 

B o~2As 

% (1 + A~')' 
= (2s 2 - ssin4s - 0.2scos4s + 0.25)/ 

(16s sin 2 s cos 2 s), it is easy to find ~. We will determine A from the condition @w(S,) = 0, 

[ ~ II 
on the given ray s,, when A = ((l--O*)/(l--@w0)) ~-~-I s~. At large values of @w0, A > i; 
for example, it follows from Fig. 2c that @w0 = 0.86, @, = 0.6, s, = 1.2, so that A = 1.95. 
From here, with s = 1.3, /6g(S)is/6g(S) = 1.295, x = 2.17 from the solution of (2.5)-(2.7). 
At small values of @w, A = 0.05-0.15; thus, for @w0 = 0.19, s = 1.3, A = 0.113, so that 

/6g(S)is/6g(S) = 1.045, ~ = 1.27. 

The above analysis confirms the conclusions regarding the need to allow for surface 
nonisothermality in the expression for St/St0 in sections far from the critical point within 
a broad range of values of the temperature factor. This is corroborated by the theoretical 
data in Fig. 3a, b, where the dynamics of the change in surface temperature with time at s = 
0.86 is shown for the body with Yc = Xc ~ for the exact and separate formulations of the 
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problem. Figure 3a corresponds to the calculation shown in Fig. i, while Fig. 3b gives re- 
sults of calculations of flow about the body with M~ = i0 and other determining parameters 
being identical. In this case, with Twi = 300 K, 01i = 0.0496, and it is evident that the 
difference in Tw(T) also becomes significant over time in the section s = 0.86. 

Calculation of the boundary-value problem (1.1)-(1.7) showed that the temperature across 
the shell equalizes for adiabatic conditions on the inside wall of the shell at large values 
of ~, and Ow(S) attains the radiative equilibrium temperature Owr(S). The latter is also de- 
termined independently of problem (1.1)-(1.5) with an energy conservation balance condition 

Ke. 4 ( 2 . 8 )  q~ (0, s) ~R-e Pr m ~.~ = ~aOw. 

H e r e ,  f o r  r = 0 . 7 ,  M~ = 4,  Te0 = 1210 K t h e  p a r a m e t e r  To i s  s m a l l  and t h e  d i s t r i b u t i o n  o f  Owr 
a b o u t  t h e  c i r c u m f e r e n c e  o f  t h e  body i s  somewhat l o w e r  t h a n  t h e  v a l u e  o f  t h e  a d i a b a t i c  s u r f a c e  
t e m p e r a t u r e ,  w h i c h  can  be  e v a l u a t e d  b e f o r e h a n d  [ 1 7 ] .  Wi th  an i n c r e a s e  i n  ~ ,  t h e  s t a g n a t i o n  
t e m p e r a t u r e  Te0 i n c r e a s e s .  T h i s  i n  t u r n  l e a d s  t o  an i n c r e a s e  i n  To and a d e c r e a s e  i n  Owr. 
M e a n w h i l e ,  t h e  v a l u e  o f  Owr c h a n g e s  much more d r a s t i c a l l y  a b o u t  t h e  c i r c u m f e r e n c e  o f  t h e  body .  

F i g u r e  4a shows t h e  r e s u l t s  o f  a n a l y s i s  o f  t h e  s o l u t i o n  o f  t h e  c o u p l e d  p r o b l e m  i n  F i g .  
l c  i n  t h e  fo rm o f  t h e  r a t i o  S t / S t i  = q w ( s * ) [ 1  - O w i ( s * ) ] / q w i ( s * ) ( 1  - O w ( S * ) ) ] ,  where  S t i  c o r -  
r e s p o n d s  t o  t h e  i n i t i a l  i s o t h e r m a l  s u r f a c e  t e m p e r a t u r e .  The d a t a  a r e  shown f o r  d i f f e r e n t  
v a l u e s  o f  t h e  c o o r d i n a t e  s* a b o u t  t h e  c i r c u m f e r e n c e  o f  t h e  body .  The d a s h e d  c u r v e s  c o r r e s p o n d  
t o  v a l u e s  o f  S t / S t i  f o u n d  by i n t e g r a t i o n  o f  t h e  b o u n d a r y - l a y e r  e q u a t i o n s  w i t h  d i f f e r e n t  i s o -  
t h e r m a l  v a l u e s  o f  t h e  w a l l  t e m p e r a t u r e .  Curves  1-3 were  c o n s t r u c t e d  w i t h  s = 0,  0 . 6 ,  and 
0 .86  f o r  t h e  body  w i t h  Yc = x~ " t2~ 

As m i g h t  be e x p e c t e d ,  t h e  r e s u l t s  o f  c a l c u l a t i o n s  w i t h  b o t h  f o r m u l a t i o n s  a g r e e  n e a r  t h e  
s t a g n a t i o n  p o i n t ,  b u t  t h e y  may d i f f e r  a p p r e c i a b l y  on t h e  l a t e r a l  s u r f a c e  ( c u r v e s  3 ) .  F o r  
t h i s  r ea son , ,  a s  i n d i c a t e d  a b o v e ,  t h e  u s e  o f  t h e  h e a t - t r a n s f e r  law o b t a i n e d  f o r  an i s o t h e r m a l  
w a l l  w i l l  l e a d  t o  s i g n i f i c a n t  e r r o r s  i n  t h e  d e t e r m i n a t i o n  o f  0 w on t h e  l a t e r a l  s u r f a c e  o f  
t h e  g i v e n  b o d i e s .  

F i g u r e  5 shows t h e  b e h a v i o r  o f  d i m e n s i o n l e s s  h e a t  f l u x  q%(s ,  ~) and s u r f a c e  t e m p e r a t u r e  
a t  d i f f e r e n t :  moments o f  t i m e  i n  t h e  p r e s e n c e  o f  l a m i n a r ,  t r a n s i t i o n a l ,  and t u r b u l e n t  r e g i o n s  
o f  b o u n d a r y - l a y e r  f l o w .  Here  M~ = 4,  T~ = 288~ O i l  = 0 . 2 4 8 ,  K = 3 . 1 8 6 ,  L/RN = 0 . 1 ,  ~ /~ea  = 
O3/2(1  + c ) / ( O  + e ) ,  BG~yl ly l=L/RN = 0,  Re = 5 . 7 . 1 0  ~, and we e x a m i n e d  f l o w  a b o u t  a body  w i t h  
a c o n t o u r  d e s c r i b e d  by t h e  e q u a t i o n  Yc = Xc ~  Curves  1-3 c o r r e s p o n d  t o  z = 0,  0 . 0 1 ,  and 
0 . 0 2 .  The s o l i d  l i n e s  we re  o b t a i n e d  f rom t h e  s o l u t i o n  o f  t h e  b o u n d a r y - v a l u e  p r o b l e m  w i t h  
t h e  u s e  o f  t w o - d i m e n s i o n a l  e n e r g y  e q u a t i o n  ( 1 . 3 ) ,  w h i l e  t h e  d a s h e d  l i n e s  were  o b t a i n e d  f o r  

= 0 .02  w i t h  t h e  u s e  o f  a o n e - d i m e n s i o n a l  e q u a t i o n ,  when h e a t  f l o w  a l o n g  t h e  l o n g i t u d i n a l  
c o o r d i n a t e  s i s  i g n o r e d .  I t  s h o u l d  be n o t e d  t h a t  t h e  c o n d i t i o n s  o f  t h e s e  c a l c u l a t i o n s  ( s u f -  
f i c i e n t l y  large thermal conductivity in the body, large longitudinal temperature gradient 
on the surface due to turbulent boundary-layer flow) maximize the difference of Ow(s) (to 10%). 
In the case of low thermal conductivities in the body or with laminar flow in the boundary 
layer, heat flow along the longitudinal coordinate can be ignored. 
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The conservativeness of the ratio St/St* was shown in [17, 18] for spherical blunting, 
where St* = qw*[p~v~cp(Te0 - Tw*)] corresponds to the maximum heat flux qw* for an iso- 
thermal surface in a broad range of determining parameters of the problem. It is interest- 
ing to analyze the behavior of this quantity when the body is heated. The results of the so- 
lution shown in Fig. 5 were analyzed in the form St/St*(s) for the same moments of time and 
are shown in Fig. 6, where 1-3 correspond to T = 0, 0.01, and 0.02. The dashed line corres- 
ponds to flow about a sphere with allowance for the transitional zone at Ow = 0zi = 0.248 
and the determining parameters in Fig. 5. Good agreement is obtained with the formula in 
[18] obtained using the effective-length method [19] for St/St* in the case Ow = const with 
the use of the model of point transition from laminar to turbulent boundary-layer flow. 

It can be seen from Fig. 6 that the ratio St/St* changes little over time for different 
behaviors of surface temperature about the circumference of the body. Here, the use of St/St* 
found for an isothermal surface as the coefficient of heat transfer from the gas phase with 
the separate method of solution of the problem will lead to a significant reduction in the 
temperature of the lateral surface, as in the case of laminar boundary-layer flow. 

This conclusion also follows from Fig. 4b, which compares results of the solution in the 
coupled formulation from the calculated data in Fig. 5 (solid curves) with data from numeri- 
cal integration of the system of equations with different isothermal values of surface temp- 
erature (dashed lines). Here, the lines characterizing the dependence of St/Sti on Ow for 
turbulent boundary-layer flow are shown for two values of s about the circumference (I and 
2 correspond to s = 0.86 and 1.23). 

Results of numerical integration of boundary-value problem (1.1)-(1.7) were compared 
with results obtained by formulas in the effective-length method [19] for heat flux with heat- 
ing of bodies of different form, these formulas having been obtained for the general case 
of a nonisothermal surface: 

qw 0.0296 n -0,~7- 0,8 0,8 0,2 -.,2 = r r m  nlp~ ue ~wXef  c p ( T r - - T w ) ,  
( r~ ~to,4+0,.oexp<-0,89~)] 

k 1 = k - ~ - ]  (t + 0.89o) ~ 

,(,+0,89,o) 
o) = u~/2h~, T~ T~o ~ + co ' 

xef = .~ pw~tow,2,5 f klr w ~1,25 (Tr --  Tw)-~176 f klrw ~1,~ (Tr --  Tw)2}. 
\ Prrn/  . .  ~ Prm/  

0 

A p o i n t  t r a n s i t i o n  f r o m  l a m i n a r  t o  t u r b u l e n t  f l o w  was s p e c i f i e d  f o r  t h e  s e p a r a t e  f o r m u l a -  
t i o n .  H e r e  t h e  c a l c u l a t i o n s  a g r e e d  on s u r f a c e  t e m p e r a t u r e  t o  w i t h i n  a b o u t  8% i n  t h e  r e g i o n  
o f  d e v e l o p e d  t u r b u l e n t  f l o w  f o r  t h e  s p h e r e .  F o r  t h e  b o d y  w i t h  Yc = Xc ~  and s e p a r a t e  
f o r m u l a t i o n  o f  t h e  p r o b l e m ,  t h e  r e d u c t i o n  i n  s u r f a c e  t e m p e r a t u r e  r e a c h e s  15% a t  s > 0 . 8  and  

= 0.02. 
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